
www.bluepelicanmath.com

Blue Pelican Computer Science
Three AP Labs

Student Version 1.01

Copyright © 2014 by Charles E. Cook; Refugio, Tx
Edited by: Tanner Wright

(All rights reserved)

This page left blank on purpose.

gettingStarted_student, page 1

www.bluepelicanmath.com

Getting Started (a word from the author)

Don’t skip this:
If you are like me, you may be tempted to skip over much of this section and go
straight to the labs. Take the time to read this, especially the part about the 20
hour requirement, the sequence of presentation, and downloading the zip files.
For your planning and preparation, those are important!

The three labs:
So, GridWorld is finished and it’s time for the “Three AP Labs”. Is that good or
bad? GridWorld made for a nice motivator and learning opportunity for student
late in the course, but did little to engage or motivate beginning students early
on. On the other hand, parts of the The Three AP Labs can be presented much
earlier in the course and students should quickly become aware of how relevant
and practical they are. The labs range from the fairly simple (Magpie ChatBot
Lab), to the more complex (Elevens Lab, a card game). Right in the middle is
Picture Lab, a fascinating lab that lets student manipulate digital images.

A down side:
Besides being so engaging and motivating, and even though these labs contribute
greatly to the learning process, there is a danger and down side. They could easily
become so time consuming, they could crowd out some precious instruction time.
If only the material sent from the College Board for these labs is used, a teacher
will typically need to spend many hours in filtering through it all in trying to
decide how and what to present as well the sequence of presentation.

Philisophy:
Hopefully, what I have here addresses all of these needs and pitfalls. I have
approached the organization of these labs with a philosophy of “Simpler is
Better.” Much like the organization of my Blue Pelican Math curriculum and the
lessons in my Java textbook, Blue Pelican Java, you will find here a day-by-day,
march-right-through, “get it done” attitude.

Tying it all together, keeping it simple:
The original three labs were written by three different individuals with three
different styles and organizations. I have tried to unify these three labs into
presentations that are both consistent and concise. Again if you expect to
navigate through the original labs as they come from the College Board, expect a

gettingStarted_student, page 2

www.bluepelicanmath.com

lengthy process in deciding what to leave out and what to keep for your students.
It was an arduous process in making these decisions and producing new
presentation of the three labs; however, I think you will find them to be very
much like the lessons in the Blue Pelican Java textbook; direct, simple, and to-the-
point.

The 20 hour requirement:
Now, about that minimum of 20 hours requirement that your student must spend
on the labs. You still will have some decisions to make regarding what to leave in
and what to take out. I have some definite suggestions and the following should
be of assistance:

You will notice that I have the labs organized into Day-1, Day-2, etc.
progression where the assumption is that each “day” is an actual hour of
instruction time.

• Magpie Lab has 5 days of instruction.
• Picture Lab has 5 days of instruction.
• Elevens Lab has 11 days of instruction; however, 4 of those are

optional (which I recommend be skipped) 11 – 4 = 7

5 + 5 + 7 = 17 hours of instruction

We need three more hours. The fact is, a few lesson won’t exactly fit one
hour (1 class, day) These could be carried over into homework or be
finished by the student in an off-period. They would best be extended over
two class periods. Following is a list of the lessons that would need more
than one class period to finish. The ones with the asterisks are the most in
need of extra time.

• Magpie, Day-3
• Magpie, Day-4*
• Picture, Day-1*
• Elevens Day-2*
• Elevens Day-3
• Elevens Day-9

Meeting the minimum requirement:
Choose the three with the asterisks to make each of those lesson actually span 2

gettingStarted_student, page 3

www.bluepelicanmath.com

days (2 hours) . That will add 3 hours to the 17 we obtained above to give a grand
total of 20 (the minimum required).

Exceeding the minimum requirements:
My recommendation is to make each of the six lessons in the list above span 2
days. That will give a total of 23 hours with these three labs.

The sequence of presentation:
When to present a lab really depends on the point in the java curriculum to which
the students have progressed. The order of complexity (from simplest to the most
advanced) of the labs is: Magpie, Picture, Elevens. Therefore, the labs should be
presented in that order. The following shows what java concepts are needed to
understand the labs. Once the students have reached that point, the lab could be
presented. Just don’t wait too long. Part of what these labs are to accomplish is
to rescue those students that are struggling with the tedium of the syntax of the
language and not seeing any practical application or relevance to the world
around them.

Magpie Lab: if, else if statements, String methods, one dimensional arrays.
 Only the last lesson uses arrays and if your students haven’t
 Had arrays yet, this could be used to introduce arrays.

Picture Lab: if else, loops, classes, objects, String methods, and two
 dimensional arrays, inheritance. Even if your students have had
 arrays of one dimension only, they should be able to adapt
 easily. Don’t worry too much about inheritance; just a cursory
 explanation will do. Don’t wait too long to get to this lab.
 Student will love it.

Elevens: All the fundaments (conditional statements and loops), ArrayList,
 String methods, classes, objects, random numbers, inheritance.
 You might want to wait until 2nd semester on this one until most of
 the advanced topics have been covered.

Download files and prepare student computers:
The beginning of each lab will instruct the student to download, unzip, and store
certain folders and files on his computer. It will be a tremendous time saver if you
as the teacher would download all of these files and already have them stored on

gettingStarted_student, page 4

www.bluepelicanmath.com

the student computers.

After being told to download the files, the student will be instructed to bring
certain classes into a java project for that particular lab. All the students will need
to know at that point is where you stored the files on their computer.

Download these zip files, unzip, and then store the resulting folder structure on
student computers:

www.bluepelicanjava.com/threeLabs/magpieLab.zip.

www.bluepelicanjava.com/threeLabs/pictureLab.zip.

www.bluepelicanjava.com/threeLabs/elevensLab.zip.

In the lessons, references are made to folder names as they exist now,
so after unzipping these files, do not change the names of the folders.

Charles Cook / Author Blue Pelican Java

http://www.bluepelicanjava.com/threeLabs/magpieLab.zip
http://www.bluepelicanjava.com/threeLabs/pictureLab.zip
http://www.bluepelicanjava.com/threeLabs/elevensLab.zip

ThereeAPLabs_table of contents, page 1

www.bluepelicanmath.com

Three AP Labs – Table of Contents

I. Magpie Lab (chatBot)
A. Day-1 Introduction to chatBots

a. Experimenting with existing chatBots on the internet.
b. Download data for the lab activities.
c. Explore the code

B. Day-2 Making modifications to the existing code.

a. Adding some else ifs and testing.
b. Adding code to handle an empty String sent to the

chatBot

C. Day-3 Better key-word detection (lengthy, could extend to
two class periods)

a. Review special String class methods.
b. Replacing older code with a call to the new

findKeyword method.
c. Assignment with some String methods

D. Day-4 A higher level of sophistication (very lengthy, could be

extended to two class periods)
a. Handling, “I like”, “I like to”, “I want”, and “I want to”
b. Handling “split” key words like “I . . . like” such as “I

really like you.”
c. Modifying the transform. . .Statements methods.

E. Day-5 Using arrays for random responses. Explore the

Windows API, javaDoc

II. Picture Lab (manipulating digital pictures)
A. Day-1 Downloading and fundamentals of digital images (very

lengthy, could be extended to two class periods)

ThereeAPLabs_table of contents, page 2

www.bluepelicanmath.com

a. Download the data files; create a java project
b. Reviewing two dimension arrays as they relate to

pixels
c. Using PictureExplorer to understand pixel coordinates

and RGB values
d. Using ColorChooser to explore the various color

models, RGB values, and shades of gray.
e. Creating and testing the methods zeroBlue and

zeroRed

B. Day-2 Inheritance, looping through a pixel array (lengthy,
could be extended to two class periods)

a. Understanding the chain of inheritance between the
classes and interface

b. Creating a Picture object and then using nested far-
each loops to visit each pixel

c. Testing with PictureTester
d. Writing code to convert a color picture to black and

white.
e. Writing code to adjust the brightness of a picture.
f. Home work assignment

C. Day-3 Mirror imaging across a central line

a. Mirror image across a vertical line
b. Mirror image across a horizontal line

D. Day-4 Flip an image

a. Flip an image horizontally
b. Flip an image vertically

E. Day-5 Repairing a defective photo, creating a collage

a. Repair a Greek temple
b. Creating a collage

ThereeAPLabs_table of contents, page 3

www.bluepelicanmath.com

c. Edge detection

III. Elevens Lab (creating a card game)
A. Day-1 Working with the Card class

a. Download code and create java project
b. Examine state variables for Card class
c. Complete code for the constructor, matches, and

toString methods. Using the @override annotation.
d. Test after completing code in main of CardTester.

B. Day-2 Working with the Deck class (very lengthy, could

extend to two class periods)
a. Import the classes for Activity 2 – concentrates on the

Deck class and its interaction with Card.
b. Complete the code for the constructor
c. Complete code for the isEmpty, size, and deal

methods.
d. Test after completing code main in DeckTester.

C. Day-3 Shuffling the deck (lengthy, could extend to two class

periods)
a. Discuss the perfectShuffle algorithm.
b. Implement the selectionShuffle method.
c. Test with main of the Shuffler class.

D. Day-4 Implementing shuffler code in the Deck class

E. Day-5 (Optional) Testing with the assert statement

F. Day-6 General game description

a. Rules of the game
b. A sample game sequence
c. Playing the game with the GUI

ThereeAPLabs_table of contents, page 4

www.bluepelicanmath.com

G. Day-7 Development of the ElevensBoard class

a. Considering a physical game.
b. Instance variables required
c. An algorithm to play the Elevens game
d. Three private helper methods.
e. Understanding the cardIndexes method.
f. Printing the remaining cards.

H. Day-8 (Optional) Using inheritance to implement a related
game – Tens

I. Day-9 Reorganizing the former ElevensBoard class into an
abstract Board class and a much smaller, new ElevensBoard
class.

a. Implementing isLegal, anotherPlayIsPossible,
containsPairSum11, and containsJQK methods

b. Test with main in ElevensGUIRunner.

J. Day-10 (Optional) Using inheritance to implement a related
game – Thirteens

K. Day-11 (Optional) Simulation of the game to determine the
probability of winning.

ThereeAPLabs_table of contents, page 5

www.bluepelicanmath.com

This page left blank on purpose.

This page left blank on purpose.

www.bluepelicanmath.com

Blue Pelican Computer Science
AP Magpie Lab

Student Version 1.01

Copyright © 2014 by Charles E. Cook; Refugio, Tx
Edited by: Tanner Wright

(All rights reserved)

magpie-day1_student, page 1

www.bluepelicanmath.com

Blue Pelican Magpie Lab – Day-1

Talking to a computer:
In this lab we will learn about Natural Language Processing (NLP). This is
similar to a chat room where two people converse with each other in
written form using computers over a network. In our studies here,
instead of two people, there is only one with a “smart computer” on
the other end participating in the conversation. The software on that
“smart computer” is known as a chatbot.

Before working with the code provided in this lab that implements a
chatbot, use your internet browser to explore some existing chatbots.
Go to www. chatbot.org, click on the Awards tab, and then click on
A.L.I.C.E.

To start a chat
session with an
actual chatbot, click
on the link indicated
here.

magpie-day1_student, page 2

www.bluepelicanmath.com

Shown here is an example of a chat session. Initiate your own by
entering something in the text box and clicking on “Say.”

Download the necessary code:
The AP Magpie Lab (as well as the other three labs) can be downloaded
at www.cccc.org . For your convenience Blue Pelican offers the
equivalent download for the Magpie Lab only at
www.bluepelicanjava.com/threeLabs/magpieLab.zip. Download and
store in a convenient place on your computer.

In this lab series there are five discussions/activities where each is
designed to exactly fit one class period:

The provided classes:
Make sure the Magpie Code folder is copied to your computer. Make a
java project out of all of the classes that are within the activity2 folder
that is just under the Magpie Code folder. Here’s how to do it with the
IDE, BlueJ.

http://www.bluepelicanjava.com/threeLabs/magpieLab.zip

magpie-day1_student, page 3

www.bluepelicanmath.com

Click on Projects | New Projects and
navigate to the folder on your computer
where you normally keep you java projects,
for example, myJavaProjects and then enter
myMagpieLab as the folder name. Next, click on Projects | Import… ,
navigate to the Magpie Code/activity2 folder, and then click Import.
This will display all of the classes stored there. Compile both classes.

At this point it is assumed that the student is somewhat familiar with
some of the methods of the String class, if statements, and loops.
Examine the code in the MagpieRunner2 class. It has a main method.
To run any program in java, we must always run a main method. From
there, the code in main can cause branching off to other code areas.

Explore the code:
Notice in main that the nextLine method will retrieve whatever is
entered via the keyboard. Also notice that the while loop has provisions
for an “escape” that will end the chat session (“Bye”).

Next, look at the code in the Magpie2 class. Notice the if and else if
statements. Also notice how the call to the getRandomResponse
method chooses a response from a group of String objects.

Run main in the MagpieRunner2 class and begin a chat session by
entering something like, “I like pickles but I can’t swim.” After
exchanging a few statements with the chatBot, enter “Bye” to end the
session. Notice that our chatbot is fairly weak at this point.

magpie-day2_student, page 1

www.bluepelicanmath.com

Blue Pelican Magpie Lab – Day 2

Inserting some of our own code:
In the Magpie2 class between the else if and the else near the top of
the code, enter the following two else ifs to make the chatbot recognize
that you are talking about your pet or your teacher.

else if((statement.indexOf(“cat”) >= 0) || (statement.indexof(“dog”) >= 0))
response = “Tell me more about your pets.”;

else if(statement.indexof(“Mr. Manson”) >= 0) //use your teachers name
response = “He sounds like a wonderful teacher.”;

Test it:
Begin a chat session by running main. Be sure to use the key words,
“cat”, “dog”, and “Mr. Manson” (or your teacher’s name) in the
conversation.

To make your chatBot a little more powerful, think of several more key-
words and an appropriate response for each. Three suggested key-word
response pairs are shown below.

Key word Response
“math” “So, are you taking a math course?”
“hit” “I don’t like violence. Let’s change the subject.”
“mother” “Oh, do you have problems with your mother?”

Again, insert these into the Magpie2 class in the form of else if
statements as was done with “cat” and “dog”. Test by running main.

Guard against an empty String:
During a chat session, just press Enter without actually entering any
characters and see what response you get. Try entering several spaces
but no visible characters and see what response is returned.

magpie-day2_student, page 2

www.bluepelicanmath.com

As an assignment, insert yet another if else statement that will cause
the response, “Please say something.” to be returned and then test it
during a chat session. Use the String methods trim() and length(). Recall
that this method removes all leading and trailing white space from a
String.

www.bluepelicanmath.com

Blue Pelican Computer Science
AP Picture Lab

Student Version 1.01

Copyright © 2014 by Charles E. Cook; Refugio, Tx
Edited by: Tanner Wright

(All rights reserved)

pictureLab-day5_student, page 1

www.bluepelicanmath.com

Blue Pelican Picture Lab – Day-5

Repair a Greek Temple
Use Picture Explorer to display temple.jpg. In this lesson we will take
the intact portion of the roof on the left and mirror image it across the
center of the building so as to make it appear that the building has
been repaired. Only a portion of the original picture needs to be
mirrored. This will be somewhat similar to a method we created in an
earlier lesson, mirrorVertical; however, the left side of only the roof
area will be mirrored and not the entire left side of the picture.

Clicking on the picture in PictureExplorer will reveal that the center of
the temple is at column 275. The portion of the roof on the left side
necessary for the repair involves rows 27 – 96 and columns 13 – 275.

Within the PictureTester class, create the void method repairTemple. It
receives no parameters.

• Create a Picture object called pic from the temple.jpg picture.
• Display pic using the explore() method.
• Create a pixels array from pic using getPixels2D().
• Set up two nested traditional for-loops.

o Let the outer row-loop go through rows 27 – 96 inclusive.
o Let the inner col-loop go through columns 13–275 inclusive.

• Set the Color of the pixel in its appropriate mirror image position.
• Call explore() to display pic.

Test this method by calling it from the main method in PictureTester.

pictureLab-day5_student, page 2

www.bluepelicanmath.com

At this point, the student is invited to explore the creation of collages
and edge detection on his/her own.

Creating a collage (a composite picture consisting of several small
pictures.

An important method of the Picture class that will be used to
create a collage is:

public void copy(Picture fromPic, int startRow, int startCol)

Below is an example of a typical call to this method using the
Picture object pic.

pic.copy(smallPic, 40, 20);
Where smallPic is the small picture to be copied into the
larger pic beginning at upper right coordinates row
40,column 20.

To see how this all works, study the following method in the
Picture class:

public void createCollage()
 {
 Picture flower1 = new Picture("flower1.jpg");
 Picture flower2 = new Picture("flower2.jpg");
 this.copy(flower1,0,0); //this is the picture object used to call this
 //method.
 this.copy(flower2,100,0);
 this.copy(flower1,200,0);
 Picture flowerNoBlue = new Picture(flower2);
 flowerNoBlue.zeroBlue();
 this.copy(flowerNoBlue,300,0);
 this.copy(flower1,400,0);
 this.copy(flower2,500,0);
 this.mirrorVertical();
 this.write("collage.jpg"); //Creates a new disk file.
 }

Test with testCollage in PictureTester.

pictureLab-day5_student, page 3

www.bluepelicanmath.com

Edge Detection:
Many software products (like PhotoshopTM) and devices including
digital cameras and the camera function in smart phones use edge
detection.

A common way to look for an edge in a picture is compare the “color
difference” between the picture in question and adjacent pixels.

The color difference will be called color distance:
Color distance is similar to the way distance between two 3D
points is calculated in Algebra.

d = �(x2 − x1)2 + (y2 − y1)2 (z2 − z1)2

Similarly, if r1, g1, and b1 stand for the respective color values of
pixel1 and r2, g2, and b2 stand for the respective color values of
pixel2, then the following gives the color distance between the
two pixels:

d = �(r2 − r1)2 + (g2 − g1)2 (b2 − b1)2

If d exceeds some predetermined value, then an edge has been
detected.

Call the Picture method colorDistance to get the color distance
between the current Pixel object used to call this method and a
passed Pixel object.

Test this with the testEdgeDetection method in the PictureTester
class.

Quick Reference
DigitalPicture Interface
Pixel[][] getPixels2D() // implemented in SimplePicture
void explore() // implemented in SimplePicture
boolean write(String fileName) // implemented in SimplePicture

SimplePicture Class (implements Digital Picture)
public SimplePicture()
public SimplePicture(int width, int height)
public SimplePicture(SimplePicture copyPicture)
public SinplePicture(String fileName)
public Pixel[][] getPixels2D()
public void explore()
public boolean write(String fileName)

Picture Class (extends SimplePicture)
public Picture()
public Picture(int height, int width)
public Picture(Picture copyPicture)
public Picture(String fileName)
public Pixel[][] getPixels2D() // from SimplePicture
public void explore() // from SimplePicture
public boolean write(String fileName) // from SimplePicture

Pixel Class
public double colorDistance(Color testColor)
public double getAverage()
public int getRed()
public int getGreen()
public int getBlue()
public Color getColor()
public int getRow()
public int getCol()
public void setRed(int value)
public void setGreen(int value)
public void setBlue(int value)
public void setColor(Color newColor)

java.awt.Color Class
public Color(int r, int g, int b)
public int getRed()
public int getGreen()
public int getBlue()

This page left blank on purpose.

www.bluepelicanmath.com

Blue Pelican Computer Science
AP Elevens Lab

Student Version 1.01

Copyright © 2014 by Charles E. Cook; Refugio, Tx
Edited by: Tanner Wright

(All rights reserved)

elevensLab Intro-day6_student, page 1

www.bluepelicanmath.com

Blue Pelican Elevens Lab – Day-6

The game of Eleven is a solitaire game that uses a deck of 52 standard
playing cards. The point values of numbered cards are the actual
numbers on the card. The remaining cards are valued as follows:

Ace = 1, Jack = 11, Queen= 12, King = 13.

The rules of the game are:

1. The deck is shuffled, and nine cards are dealt ‘‘face up’’ from the
deck to the board.

2. Then the following sequence of steps is repeated:
a. The player removes each pair of cards (A, 2, … , 10) that
total 11, e.g., an 8 and a 3, or a 10 and an A. An ace is worth
1, and suits are ignored when determining cards to remove.

b. Any triplet consisting of a J, a Q, and a K is also removed
by the player. Suits are also ignored when determining which
cards to remove.

c. Cards are dealt from the deck if possible to replace the
cards just removed.

The game is won when the deck is empty and no cards are left on
the table.

Following is a sample game:

Cards on the Table Explanation

K♠ 10♦ J♣ 2♣ 2♥ 9♦ 3♥ 5♠ 5♦ initial deal

K♠ 10♦ J♣ 7♦ 2♥ Q♠ 3♥ 5♠ 5♦ remove 2♣ (either 2 would work) and 9♦

elevensLab Intro-day6_student, page 2

www.bluepelicanmath.com

A♠ 10♦ 9♣ 7♦ 2♥ 7♣ 3♥ 5♠ 5♦ remove J♣ Q♠ K♠

A♠ 10♦ 10♠ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove 9♣ and 2♥ (removing A♠ and 10♦
 would have been legal here too)

2♠ 10♦ 9♠ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove A♠ and 10♠ (10♦ could have been
 removed instead)

A♣ 10♦ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove 2♠ and 9♠

6♦ K♣ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ 5♦ remove A♣ and 10♦

2♦ K♣ K♦ 7♦ 3♣ 7♣ 3♥ 5♠ Q♦ remove 6♦ and one of the 5s; no further
 plays are possible; game is lost.

The GUI:
Navigate through the files on your computer (using Windows Explorer if
you are using a PC) and find the Elevens.jar file in the Eleven
Code/Activity Starter/Activity6StarterCode folder. Do not try to bring
this file into your java project; rather, just double click on it and the file
should execute.

If the file does not directly execute, try running it from a
command line by doing the following:

Copy the Elevens.jar file to the root of the C:\ folder.

Bring up a command line prompt and enter the following:

cd c:\

java –jar Elevens.jar

The result should look something like this:

elevensLab Intro-day6_student, page 3

www.bluepelicanmath.com

To use this interactive GUI (graphical user interface):

• Click on a card to select/deselect it.

• After making a selection, click Replace. (It does a check to see if
the selection was legal. If so, new cards fill the selected positions.)

• Click on Restart to start a new game.

Play a few games and think about what code is executing in the
background to make all it all happen. We have already written some of
that code and will soon be writing more.

	ThreeAP Labs
	Getting started
	Table of contents
	Magpie Lab
	Day1
	Day2
	Day3
	Day4
	Day5

	Picture Lab
	Day1
	Day2
	Day3
	Day4
	Day5
	Quick reference

	Elevens Lab
	Day1
	Day2
	Day3
	Day4
	Day5
	Day6
	Day7
	Day8
	Day9
	Day10
	Day11

