

Blue Pelican GridWorld

Student Manual

AP Computer Science
Case Study

Copyright ©, 2007 by Charles Cook;
Refugio, Tx

(all rights reserved)

Table of contents

Chapters Page

Getting Started Chapter 1-1
Download and install Chapter 1-1
BugRunner project Chapter 1-2

BoxBug & SpiralBug Chapter 2-1
BoxBug Chapter 2-1
SpiralBug Chapter 2-4

The Location Class Chapter 3-1
ZorroBug Chapter 3-4

The Grid Interface Chapter 4-1
The Actor Class Chapter 5-1

BugBeGone Chapter 5-6
JumpingBug Chapter 5-6

The Critter Class Chapter 6-1
Extending the Critter Class Chapter 7-1

ChameleonCritter Chapter 7-1
CrabCritter Chapter 7-3

Grid Data Structures Chapter 8-1
AbstractGrid Chapter 8-1
BoundedGrid Chapter 8-2
UnboundedGrid Chapter 8-3

Appendices

Appendix A… Location Class Appendix A-1
Appendix B… Grid Interface Appendix B-1
Appendix C… Actor, Rock, Flower Appendix C-1

Rock Appendix C-1
Flower Appendix C-2

Appendix D… Bug, BoxBug Appendix D-1
Bug Appendix D-1
BoxBug Appendix D-3

Appendix E… Critter, ChameleonCritter Appendix E-1
Critter Appendix E-1
Chameleon Appendix E-3

Appendix F… Grid Structures Appendix F-1
AbstractGrid Appendix F-1
BoundedGrid Appendix F-2
UnboundedGrid Appendix F-4

Appendix G… Quick Reference, A/AB Appendix G-1
Appendix H… Quick Reference, AB Only Appendix H-1

Chapter 2-1

Chapter 2--BoxBug & SpiralBug

Modifying the methods of Bug

The Bug class is a very fundamental part of GridWorld. It should not be modified;
rather, a new class is created extending the Bug class, and modifications are made in it
by overriding the methods in the Bug superclass. One method that is very commonly
overridden is the act() method.

Cleaning up our act()
Recall from the last chapter (Getting Started), the Step button on the graphical interface
to GridWorld. Each time it is clicked (and also on each iteration of Run), the act method
of each object in the Grid is called. Below is the source code for the act method of the
Bug class:

public void act()
{
 if(canMove())
 move();
 else
 turn();
}

Notice how very simple this method is. It, in turn, uses three other methods of the Bug
class:

• canMove() … returns a boolean telling if it’s safe to move in the direction set for
this object.

• move() …move one space to the nearest of this object’s direction to horizontal,
vertical, or at a 45 degree diagonal.

• turn() …sets a new direction of 45 degrees clockwise from the current direction.

Notice that this code explains why when a Bug wants to move into the position of a Rock,
another Bug, or is trying to move off the grid, it turns, instead. Also notice that with just a
few changes, this is very fertile ground for modifying the behavior of the Bug.

BoxBug
The Bug class will now be extended to produce the BoxBug class. As its name suggests,
BoxBug will travel in the shape of a box (square). The BoxBug will move along in its
initial direction for a distance specified by the state variable (instance field) sideLength. It
will then turn 90 clockwise and continue doing this unless it encounters an obstacle in
which case it also turns 90 degrees clockwise and begins a new box.

Fig 2-1. When testing the BoxBug class, the graphics should
produce something like this for each BoxBug object on the
Grid.

Chapter 2-2

It has already been suggested that we will have an integer state variable called sideLength
that determines the lengths of the sides of the square traced out by BoxBug. A good
feature for this new class to have would be for its constructor to initialize sideLength as
follows:

public BoxBug(int length)
{
 sideLength = length;
 steps = 0;
}

Notice that there is now evidence of a second state variable, int steps. For the sake
of knowing when to turn 90 degrees, this variable keeps a tally of how many steps
through which the BoxBug has progressed. Also, notice that this constructor
specifies how BoxBug objects should be created:

BoxBug myBoxBug = new BoxBug(len); //int len specifies side length

So far, the new BoxBug class appears as follows (notice extends Bug):

import info.gridworld.actor.Bug;

public class BoxBug extends Bug
{
 //state variables

private int sideLength;
private int steps;

//constructor
public BoxBug(int length)
{
 sideLength = length;
 steps = 0;
}

//…more code to come…

 }

Finally, and most important of all, a modified act method must be provided that
overrides the act method of the Bug superclass. The requirements are that it keeps
up with how far the BoxBug has moved and then turns it 90 degrees clockwise.

Project… BoxBug

As a project, complete the BoxBug class by providing code for the act method so that the
behavior of BoxBug is as described: after turning 90 degrees be sure to reset steps to 0 so
the count can start over. To test this class, see the next section titled, Testing with a new
Runner class.

Chapter 2-3

Testing with a new Runner class
(This discussion applies to testing a BoxBug class. A Runner class could be
similarly created for any other modified type of Bug.)

Now that a BoxBug class has been created, how is it to be tested? First, create a
new project: call it BoxBug and create the BoxBug class within it. The actual
visual testing must be done with a BoxBugRunner class. This is not an AP tested
class, but is necessary for the testing of BoxBug and to see it perform. Enter a
second class into the project called BoxBugRunner as follows:

import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;
import java.awt.Color;

public class BoxBugRunner
{

public static void main(String args[])
{

ActorWorld world = new ActorWorld();
BoxBug bug1 = new BoxBug(6); //side of box = 6
bug1.setColor(Color.ORANGE);

BoxBug bug2 = new BoxBug(3); //side of box = 3
bug2.setColor(Color.GREEN);

world.add (new Location(7, 8), bug1);
world.add (new Location(7, 5), bug2);
world.show();

}
}

Again this code is not part of the AP test. This is just a class we need to provide
in order to test our BoxBug class with a graphical interface. One thing is;
however, of importance if we wish to create other extensions of the Bug class. If
for example, a spiral bug is created with a SpiralBug class, then the following two
lines of code would replace the corresponding two lines in the BoxBugRunner
class:

SpiralBug bug1 = new SpiralBug(6);
SpiralBug bug2 = new SpiralBug(6);

This new class could be called the SpiralBugRunner class.

It should be noted that this runner class (either BoxBugRunner or
SpiralBugRunner) will not compile unless the class (BoxBug or SpiralBug), upon
which it is dependent, has already been compiled.

Chapter 2-4

Project… SpiralBug

As a project, create a SpiralBug class by providing code for the act method so that it
moves in a spiral. A key feature is to use most of the BoxBug class and increase the value
of sideLength at the end of each turn. To test this class, see the previous section titled,
Testing with a new Runner class. When testing, set an unbounded grid.

Fig 2-1. When testing the SpiralBug class, the
graphics should produce something like this
for each SpiralBug object on the grid

Appendices A-H

The source code shown in these appendices is exactly the same as that supplied
by the College Board for Computer Science AP.

Appendix A-1

Appendix A… Location Class

info.gridworld.grid.Location class (implements Comparable)
public Location(int r, int c)

constructs a location with given row and column coordinates

public int getRow()
returns the row of this location

public int getCol()
returns the column of this location

public Location getAdjacentLocation(int direction)
returns the adjacent location in the direction that is closest to direction

public int getDirectionToward(Location target)
returns the closest compass direction from this location toward target

public boolean equals(Object other)
returns true if other is a Location with the same row and column as this location; false
otherwise

public int hashCode()
returns a hash code for this location

public int compareTo(Object other)
returns a negative integer if this location is less than other, zero if the two locations are equal, or a
positive integer if this location is greater than other. Locations are ordered in row-major order.
Precondition: other is a Location object.

public String toString()
returns a string with the row and column of this location, in the format (row, col)

Compass directions:
public static final int NORTH = 0;
public static final int EAST = 90;
public static final int SOUTH = 180;
public static final int WEST = 270;
public static final int NORTHEAST = 45;
public static final int SOUTHEAST = 135;
public static final int SOUTHWEST = 225;
public static final int NORTHWEST = 315;

Turn angles:
public static final int LEFT = -90;
public static final int RIGHT = 90;
public static final int HALF_LEFT = -45;
public static final int HALF_RIGHT = 45;
public static final int FULL_CIRCLE = 360;
public static final int HALF_CIRCLE = 180;
public static final int AHEAD = 0;

Appendix B-1

Appendix B… Grid Interface

info.gridworld.grid.Grid<E> interface
int getNumRows()

returns the number of rows, or -1 if this grid is unbounded

int getNumCols()
returns the number of columns, or -1 if this grid is unbounded

boolean isValid(Location loc)
returns true if loc is valid in this grid, false otherwise
Precondition: loc is not null

E put(Location loc, E obj)
puts obj at location loc in this grid and returns the object previously at that location (or null if the
location was previously unoccupied).
Precondition: (1) loc is valid in this grid (2) obj is not null

E remove(Location loc)
removes the object at location loc from this grid and returns the object that was removed (or null if the
location is unoccupied)
Precondition: loc is valid in this grid

E get(Location loc)
returns the object at location loc (or null if the location is unoccupied)
Precondition: loc is valid in this grid

ArrayList<Location> getOccupiedLocations()
returns an array list of all occupied locations in this grid

ArrayList<Location> getValidAdjacentLocations(Location loc)
returns an array list of the valid locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<Location> getEmptyAdjacentLocations(Location loc)
returns an array list of the valid empty locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
returns an array list of the valid occupied locations adjacent to loc in this grid
Precondition: loc is valid in this grid

ArrayList<E> getNeighbors(Location loc)
returns an array list of the objects in the occupied locations adjacent to loc in this grid
Precondition: loc is valid in this grid

Appendix C-1

Appendix C… Actor, Rock, Flower

info.gridworld.actor.Actor class
public Actor()

constructs a blue actor that is facing north

public Color getColor()
returns the color of this actor

public void setColor(Color newColor)
sets the color of this actor to newColor

public int getDirection()
returns the direction of this actor, an angle between 0 and 359 degrees

public void setDirection(int newDirection)
sets the direction of this actor to the angle between 0 and 359 degrees that is equivalent to
newDirection

public Grid<Actor> getGrid()
returns the grid of this actor, or null if this actor is not contained in a grid

public Location getLocation()
returns the location of this actor, or null if this actor is not contained in a grid
Precondition: this actor is contained in a grid

public void putSelfInGrid(Grid<Actor> gr, Location loc)
puts this actor into location loc of grid gr. If there is another actor at loc, it is removed.
Precondition: (1) This actor is not contained in a grid (2) loc is valid in gr

public void removeSelfFromGrid()
removes this actor from its grid.
Precondition: this actor is contained in a grid

public void moveTo(Location newLocation)
moves this actor to newLocation. If there is another actor at newLocation, it is removed.
Precondition: (1) This actor is contained in a grid (2) newLocation is valid in the grid of this actor

public void act()
reverses the direction of this actor. Override this method in subclasses of Actor to define types of actors
with different behavior

public String toString()
returns a string with the location, direction, and color of this actor

info.gridworld.actor.Rock class (extends Actor)
public Rock()

constructs a black rock

public Rock(Color rockColor)
constructs a rock with color rockColor

public void act()
overrides the act method in the Actor class to do nothing

Appendix C-2

info.gridworld.actor.Flower class (extends Actor)
public Flower()

constructs a pink flower

public Flower(Color initialColor)
constructs a flower with color initialColor

public void act()
causes the color of this flower to darken

Appendix D-1

Appendix D… Bug, BoxBug

Bug.java
package info.gridworld.actor;
import info.gridworld.grid.Grid;
import info.gridworld.grid.Location;
import java.awt.Color;
/**
* A Bug is an actor that can move and turn. It drops flowers as it moves.
* The implementation of this class is testable on the AP CS A and AB Exams.
*/
public class Bug extends Actor
{

/**
* Constructs a red bug.
*/
public Bug()
{

setColor(Color.RED);
}

/**
* Constructs a bug of a given color.
* @param bugColor the color for this bug
*/
public Bug(Color bugColor)
{

setColor(bugColor);
}

/**
* Moves if it can move, turns otherwise.
*/
public void act()
{

if (canMove())
move();

else
turn();

}

/**
* Turns the bug 45 degrees to the right without changing its location.
*/
public void turn()
{

setDirection(getDirection() + Location.HALF_RIGHT);
}

/**
* Moves the bug forward, putting a flower into the location it previously occupied.
*/

Appendix D-2

public void move()
{

Grid<Actor> gr = getGrid();
if (gr == null)

return;
Location loc = getLocation();

Location next = loc.getAdjacentLocation(getDirection());
if (gr.isValid(next))

moveTo(next);
else

removeSelfFromGrid();
Flower flower = new Flower(getColor());
flower.putSelfInGrid(gr, loc);

}

/**
* Tests whether this bug can move forward into a location that is empty or contains a flower.
* @return true if this bug can move.
*/
public boolean canMove()
{

Grid<Actor> gr = getGrid();
if (gr == null)

return false;
Location loc = getLocation();
Location next = loc.getAdjacentLocation(getDirection());
if (!gr.isValid(next))

return false;
Actor neighbor = gr.get(next);
return (neighbor == null) || (neighbor instanceof Flower);
// ok to move into empty location or onto flower
// not ok to move onto any other actor

}
}

Appendix D-3

BoxBug.java
import info.gridworld.actor.Bug;
/**
* A BoxBug traces out a square “box” of a given size.
* The implementation of this class is testable on the AP CS A and AB Exams.
*/
public class BoxBug extends Bug
{

private int steps;
private int sideLength;
/**
* Constructs a box bug that traces a square of a given side length
* @param length the side length
*/
public BoxBug(int length)
{

steps = 0;
sideLength = length;

}

/**
* Moves to the next location of the square.
*/
public void act()
{

if (steps < sideLength && canMove())
{

move();
steps++;

}
else
{

turn();
turn();
steps = 0;

}
}

}

Appendix E-1
Appendix E… Critter, ChameleonCritter

Critter.java
package info.gridworld.actor;
import info.gridworld.grid.Location;
import java.util.ArrayList;
/**
* A Critter is an actor that moves through its world, processing
* other actors in some way and then moving to a new location.
* Define your own critters by extending this class and overriding any methods of this class except for act.
* When you override these methods, be sure to preserve the postconditions.
* The implementation of this class is testable on the AP CS A and AB Exams.
*/
public class Critter extends Actor
{

/**
* A critter acts by getting a list of other actors, processing that list, getting locations to move to,
* selecting one of them, and moving to the selected location.
*/
public void act()
{

if (getGrid() == null)
return;

ArrayList<Actor> actors = getActors();
processActors(actors);
ArrayList<Location> moveLocs = getMoveLocations();
Location loc = selectMoveLocation(moveLocs);
makeMove(loc);

}

/**
* Gets the actors for processing. Implemented to return the actors that occupy neighboring grid locations.
* Override this method in subclasses to look elsewhere for actors to process.
* Postcondition: The state of all actors is unchanged.
* @return a list of actors that this critter wishes to process.
*/
public ArrayList<Actor> getActors()
{

return getGrid().getNeighbors(getLocation());
}

/**
* Processes the elements of actors. New actors may be added to empty locations.
* Implemented to “eat” (i.e., remove) selected actors that are not rocks or critters.
* Override this method in subclasses to process actors in a different way.
* Postcondition: (1) The state of all actors in the grid other than this critter and the
* elements of actors is unchanged. (2) The location of this critter is unchanged.
* @param actors the actors to be processed
*/
public void processActors(ArrayList<Actor> actors)
{

for (Actor a : actors)
{

if (!(a instanceof Rock) && !(a instanceof Critter))
a.removeSelfFromGrid();

}
}

/**
* Gets a list of possible locations for the next move. These locations must be valid in the grid of this
critter.
* Implemented to return the empty neighboring locations. Override this method in subclasses to look
* elsewhere for move locations.

Appendix E-2

* Postcondition: The state of all actors is unchanged.
* @return a list of possible locations for the next move
*/
public ArrayList<Location> getMoveLocations()
{

return getGrid().getEmptyAdjacentLocations(getLocation());
}

/**
* Selects the location for the next move. Implemented to randomly pick one of the possible locations,
* or to return the current location if locs has size 0. Override this method in subclasses that
* have another mechanism for selecting the next move location.
* Postcondition: (1) The returned location is an element of locs, this critter's current location, or null.
* (2) The state of all actors is unchanged.
* @param locs the possible locations for the next move
* @return the location that was selected for the next move.
*/
public Location selectMoveLocation(ArrayList<Location> locs)
{

int n = locs.size();
if (n == 0)

return getLocation();
int r = (int) (Math.random() * n);
return locs.get(r);

}

/**
* Moves this critter to the given location loc, or removes this critter from its grid if loc is null.
* An actor may be added to the old location. If there is a different actor at location loc, that actor is
* removed from the grid. Override this method in subclasses that want to carry out other actions
* (for example, turning this critter or adding an occupant in its previous location).
* Postcondition: (1) getLocation() == loc.
* (2) The state of all actors other than those at the old and new locations is unchanged.
* @param loc the location to move to
*/
public void makeMove(Location loc)
{

if (loc == null)
removeSelfFromGrid();

else
moveTo(loc);

}
}

Appendix E-3

ChameleonCritter.java
import info.gridworld.actor.Actor;
import info.gridworld.actor.Critter;
import info.gridworld.grid.Location;
import java.util.ArrayList;
/**
* A ChameleonCritter takes on the color of neighboring actors as it moves through the grid.
* The implementation of this class is testable on the AP CS A and AB Exams.
*/
public class ChameleonCritter extends Critter
{

/**
* Randomly selects a neighbor and changes this critter’s color to be the same as that neighbor’s.
* If there are no neighbors, no action is taken.
*/
public void processActors(ArrayList<Actor> actors)
{

int n = actors.size();
if (n == 0)

return;
int r = (int) (Math.random() * n);
Actor other = actors.get(r);
setColor(other.getColor());

}

/**
* Turns towards the new location as it moves.
*/
public void makeMove(Location loc)
{

setDirection(getLocation().getDirectionToward(loc));
super.makeMove(loc);

}
}

Appendix F-1

Appendix F… Grid Structures

AbstractGrid.java
package info.gridworld.grid;
import java.util.ArrayList;
/**
* AbstractGrid contains the methods that are common to grid implementations.
* The implementation of this class is testable on the AP CS AB Exam.
*/
public abstract class AbstractGrid<E> implements Grid<E>
{

public ArrayList<E> getNeighbors(Location loc)
{

ArrayList<E> neighbors = new ArrayList<E>();
for (Location neighborLoc : getOccupiedAdjacentLocations(loc))

neighbors.add(get(neighborLoc));
return neighbors;

}

public ArrayList<Location> getValidAdjacentLocations(Location loc)
{

ArrayList<Location> locs = new ArrayList<Location>();
int d = Location.NORTH;
for (int i = 0; i < Location.FULL_CIRCLE / Location.HALF_RIGHT;
i++)
{

Location neighborLoc = loc.getAdjacentLocation(d);
if (isValid(neighborLoc))

locs.add(neighborLoc);
d = d + Location.HALF_RIGHT;

}
return locs;

}

public ArrayList<Location> getEmptyAdjacentLocations(Location loc)
{

ArrayList<Location> locs = new ArrayList<Location>();
for (Location neighborLoc : getValidAdjacentLocations(loc))
{

if (get(neighborLoc) == null)
locs.add(neighborLoc);

}
return locs;

}

public ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
{

ArrayList<Location> locs = new ArrayList<Location>();
for (Location neighborLoc : getValidAdjacentLocations(loc))
{

if (get(neighborLoc) != null)
locs.add(neighborLoc);

}
return locs;

}

Appendix F-2

/**
* Creates a string that describes this grid.
* @return a string with descriptions of all objects in this grid (not
* necessarily in any particular order), in the format {loc=obj, loc=obj, ...}
*/
public String toString()
{

String s = "{";
for (Location loc : getOccupiedLocations())
{

if (s.length() > 1)
s += ", ";

s += loc + "=" + get(loc);
}
return s + "}";

}
}

BoundedGrid.java
package info.gridworld.grid;
import java.util.ArrayList;
/**
* A BoundedGrid is a rectangular grid with a finite number of rows and columns.
* The implementation of this class is testable on the AP CS AB Exam.
*/
public class BoundedGrid<E> extends AbstractGrid<E>
{

private Object[][] occupantArray; // the array storing the grid elements

/**
* Constructs an empty bounded grid with the given dimensions.
* (Precondition: rows > 0 and cols > 0.)
* @param rows number of rows in BoundedGrid
* @param cols number of columns in BoundedGrid
*/
public BoundedGrid(int rows, int cols)
{

if (rows <= 0)
throw new IllegalArgumentException("rows <= 0");

if (cols <= 0)
throw new IllegalArgumentException("cols <= 0");

occupantArray = new Object[rows][cols];
}

public int getNumRows()
{

return occupantArray.length;
}

public int getNumCols()
{

// Note: according to the constructor precondition, numRows() > 0, so
// theGrid[0] is non-null.
return occupantArray[0].length;

}

Appendix F-3

public boolean isValid(Location loc)
{

return 0 <= loc.getRow() && loc.getRow() < getNumRows()
&& 0 <= loc.getCol() && loc.getCol() < getNumCols();

}

public ArrayList<Location> getOccupiedLocations()
{

ArrayList<Location> theLocations = new ArrayList<Location>();
// Look at all grid locations.
for (int r = 0; r < getNumRows(); r++)
{

for (int c = 0; c < getNumCols(); c++)
{

// If there's an object at this location, put it in the array.
Location loc = new Location(r, c);
if (get(loc) != null)

theLocations.add(loc);
}

}
return theLocations;

}

public E get(Location loc)
{

if (!isValid(loc))
throw new IllegalArgumentException("Location " + loc + " is
not valid");

return (E) occupantArray[loc.getRow()][loc.getCol()]; // unavoidable
 //warning

}

public E put(Location loc, E obj)
{

if (!isValid(loc))
throw new IllegalArgumentException("Location " + loc+ " is
not valid");

if (obj == null)
throw new NullPointerException("obj == null");

// Add the object to the grid.
E oldOccupant = get(loc);
occupantArray[loc.getRow()][loc.getCol()] = obj;
return oldOccupant;

}

public E remove(Location loc)
{

if (!isValid(loc))
throw new IllegalArgumentException("Location " + loc + " is
not valid");

// Remove the object from the grid.
E r = get(loc);
occupantArray[loc.getRow()][loc.getCol()] = null;
return r;

}
}

Appendix F-4

UnboundedGrid.java
package info.gridworld.grid;
import java.util.ArrayList;
import java.util.*;

/**
* An UnboundedGrid is a rectangular grid with an unbounded number of rows and columns.
* The implementation of this class is testable on the AP CS AB Exam.
*/
public class UnboundedGrid<E> extends AbstractGrid<E>
{

private Map<Location, E> occupantMap;

/**
* Constructs an empty unbounded grid.
*/
public UnboundedGrid()
{

occupantMap = new HashMap<Location, E>();
}

public int getNumRows()
{

return -1;
}

public int getNumCols()
{

return -1;
}

public boolean isValid(Location loc)
{

return true;
}

public ArrayList<Location> getOccupiedLocations()
{

ArrayList<Location> a = new ArrayList<Location>();
for (Location loc : occupantMap.keySet())

a.add(loc);
return a;

}

public E get(Location loc)
{

if (loc == null)
throw new NullPointerException("loc == null");

return occupantMap.get(loc);
}

public E put(Location loc, E obj)
{

if (loc == null)
throw new NullPointerException("loc == null");

if (obj == null)
throw new NullPointerException("obj == null");

return occupantMap.put(loc, obj);
}

Appendix F-5

public E remove(Location loc)
{

if (loc == null)
throw new NullPointerException("loc == null");

return occupantMap.remove(loc);
}

}

Appendix G-1

Appendix G… Quick Reference, A/AB

Location Class (implements Comparable)

public Location(int r, int c)
public int getRow()
public int getCol()
public Location getAdjacentLocation(int direction)
public int getDirectionToward(Location target)
public boolean equals(Object other)
public int hashCode()
public int compareTo(Object other)
public String toString()
NORTH, EAST, SOUTH, WEST, NORTHEAST, SOUTHEAST, NORTHWEST, SOUTHWEST
LEFT, RIGHT, HALF_LEFT, HALF_RIGHT, FULL_CIRCLE, HALF_CIRCLE, AHEAD

Grid<E> Interface

int getNumRows()
int getNumCols()
boolean isValid(Location loc)
E put(Location loc, E obj)
E remove(Location loc)
E get(Location loc)
ArrayList<Location> getOccupiedLocations()
ArrayList<Location> getValidAdjacentLocations(Location loc)
ArrayList<Location> getEmptyAdjacentLocations(Location loc)
ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
ArrayList<E> getNeighbors(Location loc)

Actor Class

public Actor()
public Color getColor()
public void setColor(Color newColor)
public int getDirection()
public void setDirection(int newDirection)
public Grid<Actor> getGrid()
public Location getLocation()
public void putSelfInGrid(Grid<Actor> gr, Location loc)
public void removeSelfFromGrid()
public void moveTo(Location newLocation)
public void act()
public String toString()

Rock Class (extends Actor)
public Rock()
public Rock(Color rockColor)
public void act()

Flower Class (extends Actor)
public Flower()
public Flower(Color initialColor)
public void act()

Bug Class (extends Actor)
public Bug()
public Bug(Color bugColor)
public void act()
public void turn()
public void move()
public boolean canMove()

Appendix G-2

BoxBug Class (extends Bug)
public BoxBug(int n)
public void act()

Critter Class (extends Actor)
public void act()
public ArrayList<Actor> getActors()
public void processActors(ArrayList<Actor> actors)
public ArrayList<Location> getMoveLocations()
public Location selectMoveLocation(ArrayList<Location> locs)
public void makeMove(Location loc)

ChameleonCritter Class (extends Critter)
public void processActors(ArrayList<Actor> actors)
public void makeMove(Location loc)

Appendix H-1

Appendix H… Quick Reference, AB Only

AbstractGrid Class (implements Grid)

public ArrayList<E> getNeighbors(Location loc)
public ArrayList<Location> getValidAdjacentLocations(Location loc)
public ArrayList<Location> getEmptyAdjacentLocations(Location loc)
public ArrayList<Location> getOccupiedAdjacentLocations(Location loc)
public String toString()

BoundedGrid Class (extends AbstractGrid)
public BoundedGrid(int rows, int cols) / public UnboundedGrid()
public int getNumRows()
public int getNumCols()
public boolean isValid(Location loc)
public ArrayList<Location> getOccupiedLocations()
public E get(Location loc)
public E put(Location loc, E obj)
public E remove(Location loc)

UnboundedGrid Class (extends AbstractGrid)
public UnboundedGrid()
public int getNumRows()
public int getNumCols()
public boolean isValid(Location loc)
public ArrayList<Location> getOccupiedLocations()
public E get(Location loc)
public E put(Location loc, E obj)
public E remove(Location loc)

	Cover
	Table of Contents
	Chapter 1... Getting Started
	BugRunner
	Exercise, Chapter 1

	Chapter 2... BoxBug & Spiral Bug
	Project... BoxBug
	Project... SpiralBug

	Chapter 3... The Location Class
	Exercises, Chapter 3
	Project... the compareTo method
	Project... ZorroBug

	Chapter 4... The Grid Interface
	Exercise, Chapter 4
	Project... creation of getEmptyAdjacentLocations

	Chapter 5... The Actor Class
	Exercise A, Chapter 5
	Exercise B, Chapter 5
	Project... BugBeGone
	Project... JumpingBug

	Chapter 6... The Critter Class
	Exercise, Chapter 6

	Chapter 7... Extending the Critter Class
	Project... ChameleonCritter
	Exercise A, Chapter 7 (ChameleonCritter)
	Project... CrabCritter
	Exercise B, Chapter 7 (CrabCritter)

	Chapter 8... Grid Data Structures
	AbstractGrid
	Exercise A, Chapter 8 (AbstractGrid)
	BoundedGrid
	Exercise B, Chapter 8 (BoundedGrid)
	UnboundedGrid
	Exercise C, Chapter C (UnboundedGrid)

	Appendices
	Appendix A... Location Class
	Appendix B... Grid Interface
	Appendix C... Actor, Rock, Flower
	Actor
	Rock
	Flower

	Appendix D... Bug, BoxBug
	Bug
	BoxBug

	Appendix E... Critter, ChameleonCritter
	Appendix... Grid Structures
	AbstractGrid
	BoundedGrid
	UnboundedGrid

	Appendix G... Quick Reference, A/AB
	Appendix H... Quick Reference, AB Only

