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Lesson 52….. Binary Search Tree 
 
We will begin by showing how a binary search tree is constructed. We will construct our tree 
from the following sequence of integers; 50, 56, 52, 25, 74, and 54. Each number will result in a 
“node” being constructed. The nodes in the series of figures below are depicted with circles, and 
the sequence of figures shows the sequence in which the nodes are added. 
 
The rules: 

As can be observed from the drawings, a new integer (n) is added by starting at the root node 
(top level node) as the first “comparison node” and then using the following rules: 
 

1. If the number we are to insert (n) is greater than the “comparison node”, move down 
the tree and to the right; the first node encountered is the new “comparison node”.  

2. If the number we are to insert (n) is less than or equal to the “comparison node”, 
move down the tree and to the left; the first node encountered is the new “comparison 
node”. 

3. If, after comparing at a node position, a node does not exist in the direction in which 
we try to move, then insert a new node containing the integer n at that position. 

 
 

 
 

 
 
 
 

 
 
Fig 52-1  Tree started with root node 
 

 
 

 
 
 
 
 
            
         
          Fig 52-2  56 is added 
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1. The actual data (an integer for the example above) 
2. A reference to the right-hand node immediately beneath this node (null if it doesn’t 

exist) 
3. A reference to the left-hand node immediately beneath this node (null if it doesn’t 

exist) 
 

We are going to call this node-creating class, BstNode. Its implementation is shown 
below. 

public class BstNode 
{ 

    public BstNode(int i)  //Constructor 
    { 

        leftNode = null; 
        rightNode = null; 
        intData = i;    

    } 
  
    public int intData; 
    public BstNode leftNode; 
    public BstNode rightNode; 

} 
 
Notice that the three state variables in this class correspond to the three numbered 
requirements mentioned earlier. Also, notice that the leftNode and rightNode fields are set 
to null since when a node is constructed, there are no other nodes “hanging off it” yet. 

 
The BST class: 

Next, we turn our attention to the BST class itself. In the constructor, we simply create the 
root node (the highest level node). 
 

The reader is strongly urged to look over Appendix W (Tree Definitions). There, 
you will get a firm grounding in the tree-terms we have already used here and 
new ones we will be using soon. 
 

 The constructor and state variables are as follows for the BST class: 
 

public class BST 
{  

    public BST(int i) //constructor  
    {     // Root node is instantiated at the time of creation of the tree object. 
              rootNode = new BstNode(i);   //create a node with the above class         
    } 
     …more code to come… 
 
    BstNode rootNode;      

} 
 

The addNode method: 
Now comes the most important (and most complex) method of the BST  class, the 
addNode method in which decisions are made as to the correct position for each new 
node to be added. Here are the rules for inserting a new node after first setting the root 
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node as the currentNode.  
 

1. If the number we are to insert (n) is greater than the currentNode, move down the 
tree and to the right; the first node encountered is the new currentNode. 

2. If the number we are to insert (n) is less than or equal to the currentNode, move 
down the tree and to the left; the first node encountered is the new currentNode. 

3. Continuing in this same fashion, move down the tree. If, after comparing at a 
node position, a node does not exist in the direction in which we try to move, then 
insert a new node containing the integer n at that position. 

 
If these rules seem familiar, they are essentially the same as those at the top of page 52-1. 
Here, in this latest rendition, we become more specific with regard to the variable names 
to be used in the method that implements the rules. The complete class (including the 
addNode method) now reads: 
 
public class BST 
{ 
    public BST(int i)  //constructor: Root node added at the time of creation of the tree 
    { 
        rootNode = new BstNode(i);          
    } 
 
    public void addNode(int i) 
    { 
        BstNode currentNode = rootNode; 
        boolean finished = false; 
        do 
        { 
            BstNode curLeftNode = currentNode.leftNode; 
            BstNode curRightNode = currentNode.rightNode; 
            int curIntData = currentNode.intData; 
             
            if(i > curIntData)  //look down the right branch 
            {    

                if(curRightNode == null)  
                {  //create a new node  referenced with currentNode.rightNode 
                     currentNode.rightNode = new BstNode(i); 
                     finished = true; 
                } 
                else //keep looking by assigning a new current node one level down  
                {   currentNode = currentNode.rightNode;  } 

            } 
            else  //look down the left branch  
            { 

                if(curLeftNode == null)  
                {  //create a new node referenced with currentNode.leftNode 

            currentNode.leftNode = new BstNode(i); 
            finished = true; 

                } 
                else   
                {  //keep looking by assigning a new current node one level down 
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                     currentNode = currentNode.leftNode; 
                }                   

            } 
        }while(!finished);     
    }     
    BstNode rootNode;     
} 
 
It is left to the reader to examine the code in the addNode method and to convince 
himself that the three numbered rules are being implemented. 
 

A class for testing: 
To test the BST class, use the following Tester class: 

public class Tester 
{ 

    public static void main(String args[]) 
    { 
         //the first integer in the tree is used to create the object 

        BST bstObj = new BST(50);   
        bstObj.addNode(56); 
        bstObj.addNode(52); 
        bstObj.addNode(25); 
        bstObj.addNode(74); 
        bstObj.addNode(54); 

         } 
} 

 
Prove that it really works: 

The integers mentioned in the example at the beginning of this lesson are added to the 
tree with this test code. But how do we really know that it is working? What we need is 
some type of printout. If we add the following traverseAndPrint method to the BST class 
we will see that our class does, indeed, perform as advertised. 
 
    public void traverseAndPrint(BstNode currentNode ) 
    { 

        System.out.print("data = " + currentNode.intData); 
         //To aid in your understanding, you may want to just ignore this 

        //indented portion and just print the integer. In that case, change the 
        //line above to a println instead of a print. 
        if(currentNode.leftNode == null) 
        {       System.out.print("    left = null");     } 
        else 
        {       System.out.print("    left = " + (currentNode.leftNode).intData);   } 
         
        if(currentNode.rightNode == null) 
        {       System.out.print("    right = null");   } 
        else 
        {       System.out.print("    right = " + (currentNode.rightNode).intData);} 
        System.out.println(""); 

         
        if(currentNode.leftNode != null) 
             traverseAndPrint(currentNode.leftNode); 
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        if(currentNode.rightNode != null) 
             traverseAndPrint(currentNode.rightNode); 

    } 
 
This method has recursive calls to itself and will print every node in the tree. In addition 
to the data stored in each node (an integer), it also prints the contents of the two nodes 
“hanging off” this node. 
 
Test this new method by adding the following code at the bottom of the main method in 
the Tester class. 
 
 //print all the nodes 
        bstObj.traverseAndPrint(bstObj.rootNode); 
 
For the data suggested in the examples on page 52-1 the output will appear as shown 
below when the main method in the Tester class is executed: 
 

data = 50    left = 25    right = 56 
data = 25    left = null  right = null 
data = 56    left = 52    right = 74 
data = 52    left = null  right = 54 
data = 54    left = null  right = null 
data = 74    left = null  right = null 

 
 

************************************************************************** 
 
 

Project… BST find Method 
 
Now we come to what a binary search tree is all about, the search. You are to create a method of 
the BST class called find. Its signature is as follows: 
  
 public boolean find(int i) 
 
It returns a true if i is found in the binary tree and  false if it’s not found. This method will use 
essentially the same rules as those for the addNode method except when we come to the place 
where we formerly added a node; we will exit the method and say that the search was 
unsuccessful. Likewise, there is more to the comparisons. We can no longer just test to see if the 
data we are searching for is greater than or less than that of the currentNode. We must now also 
test for equality. 
 
To test the find method, add the following code to the bottom of the main method in Tester. 
 
        System.out.println(bstObj.find(74));  //This is one it will find…prints a true 
        System.out.println(bstObj.find(13));  //This is one it won't find…prints a false 
 
Why use a Binary Search Tree? 

What can searching a Binary Search Tree (BST) do that we could not accomplish 
searching a linear array? The BST can do it faster, much faster. The Big O value for a 
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reasonably balanced BST is O(log n). For an unordered array it’s O(n); however, for an 
ordered array, a binary search is also of the order O(log n). So, what are the advantages of 
a binary search tree over searching an ordered array (using a binary search) since their 
Big O values are the same? The advantages are: 
 

1. Using a binary search on an array, ordering is necessary after the insertion of 
each new element. An alternative to this is inserting the new element in the 
correct position. In either case, the time required to do this is typically 
considerably more than the time required to insert a new node in a BST. 

 
2. In an array, we must pre-dimension the array. 

a. If we dimension to small, we run the risk of running out of space if more 
nodes need to be added than were originally anticipated. 

b. If we dimension to large, we waste memory and may degrade the 
performance of the computer. 

 
With the BST object, we dynamically create nodes as we need them in dynamic 
memory. There is no need to know ahead of time how many there will eventually 
be. 

 
Anonymous objects: 

Have you noticed that with the BST class, the node objects that contain our data are 
not named (except for the root node)? We have to traverse the tree and each node we 
encounter gives references to the two nodes “hanging off” it with leftNode and rightNode. 
Recall that we had a similar situation in Lesson 49 with the singly linked list in which we 
had a “chain” of nodes, each with a reference to the next. Here, each node has references 
to two nodes that follow it. 

 
Balanced Tree: 

Above it was mentioned that the Big O value for searching a Binary Search Tree was 
O(log n) if the tree was reasonably balanced. What do we mean by a balanced tree? Refer 
back to Fig 52-6 and it can be seen that this tree is not balanced. There are more nodes to 
the right of the root (50) than to the left. An extreme case of this is shown below. 

 
 

 
 

 
 

 
 
 
 

 
                Fig 52-7  A totally unbalanced “tree” 

 
Consider the following sequence of numbers to be 
added to a binary tree. 
 
         {50, 56, 74, 99} 
 
The resulting “tree” to the left is totally unbalanced. 
Every new node to be added lies to the right of the 
previous node. In this case (which is clearly the worst 
case) the Big O value for searching the tree is O(n). If 
there are n items we might very well have to do n 
comparisons before finding the desired one. 

99

74

50 

56

 
If we are very unlucky, just such a tree might result when we add our nodes. With 
random data, it is not very likely to be as bad as Fig 52-7; however, what is more likely, 
is that that tree be somewhat out of balance which would, of course, reduce the efficiency 
of the search. What can we do to prevent this unbalance? It is beyond the scope of this 
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book, however, there are algorithms that can detect this and “rebalance the tree”. Nothing 
comes free, and this rebalancing adds complexity to the code as well as additional 
processing time.  
 

Generalizing, Using Objects for Data: 
It is possible to modify our class so that instead of just storing primitive integers we could 
store objects. To do this we would replace the code everywhere we pass an int variable as 
an argument, with Comparable obj . 
 
The only catch is that the obj object that we pass in, must implement the compareTo 
method. The other requirement is that the former state variable, int intData be replaced 
with Comparable data. Rather than modify the BST class that we have already done, we 
are going to present another class that adds Comparable type objects to nodes in a Binary 
Search Tree. This class is just about the ultimate as far as brevity of code is concerned; 
however it is more difficult to understand because it uses recursion. 

 
public class BsTree 
{ 
    public BsTree(Comparable d) 
    { 

        theData = d; 
        leftNode = null;      //This and next line could be omitted, 
        rightNode = null;    //they are automatically null. 

    } 
     
    public BsTree addNode(Comparable d) 
    { 

        if(d.compareTo(theData) > 0) 
        {     //d should be inserted somewhere in the branch to the right                 
                if(rightNode != null)  
     //right node exists, go down that branch, look for place to put it 
                 rightNode.addNode(d);   
                 else 
                 rightNode = new BsTree(d);   //Create new rightNode, store d in it 
        } 
        else 
        {     //d should be inserted somewhere in the branch to the left                  
                 if(leftNode != null)  
      //left node exists, go down that branch, look for place to put it 
                 leftNode.addNode(d);   
                 else 
                leftNode = new BsTree(d);   //Create a new leftNode, store d in it                       
        }         
        return this; 

    }     
    private Comparable theData; 
    private BsTree leftNode, rightNode; 
} 
 
It is left to the reader to create a  find method comparable to those of the BST class earlier 
in this lesson. We also need a traverseAndPrint method for this class. Three different 
versions of traverseAndPrint will be offered below as the various types of traversals are 
discussed. 
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Traversal types: 
There are four traversal types. They are preorder, inorder, postorder, and level order traversals. 
Each visits all of the nodes in the tree, but each in a different order. 
  

Preorder traversal of a Binary Search Tree: 
Order of visitation of nodes: 50, 25, 18, 7, 19, 35, 30, 37, 76,  
61, 56, 68, 80, 78, 85 

 
 
 
Fig. 52-8 
Preorder traversal 
follows the sequence 
of arrows. Rule: A 
node is visited before 
its descendants. 
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The following code implements a preorder traversal of a tree as depicted in Fig. 52-8. An easy 
way to remember this code is to note the printing for this preorder traversal comes before the two 
recursive calls. 
 
 public void traverseAndPrint( ) //Use with BsTree class on previous page. 
 { 
  System.out.println(theData); 
  if( leftNode != null )  leftNode.traverseAndPrint( ); 
  if( rightNode != null )  rightNode.traverseAndPrint( ); 
 } 
 
 

Inorder traversal of a Binary Search Tree: 
Order of visitation of nodes: 7, 18, 19, 25, 30, 35, 37, 50, 56,  
61, 68, 76, 78, 80, 85 

 
Fig. 52-9 
Inorder traversal 
follows the sequence 
of arrows. The order is 
the ascending order of 
a sorted list. Rule: A 
node is visited after 
its left subtree and 
before its right 
subtree. 
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The following code implements an inorder traversal of a tree as depicted in Fig. 52-9. This 
technique is important since it visits the nodes in a “sorted order.” An easy way to remember 
this code is to note the printing for this inorder traversal comes in-between the two recursive 
calls. 
 

public void traverseAndPrint( ) 
 {   



52-9 
  if( leftNode != null )  leftNode.traverseAndPrint( ); 
  System.out.println(theData); 
  if( rightNode != null )  rightNode.traverseAndPrint( ); 
 } 

//Exchanging the first and last lines of this method results in a reverse-order traversal. 
 

Postorder traversal of a Binary Search Tree: 
Order of visitation of nodes: 7, 19, 18, 30, 37, 35, 25, 56, 68,  
61, 78, 85, 80, 76, 50 

 
 
 
Fig. 52-10 
Postorder traversal 
follows the sequence 
of arrows. Rule: A 
node is visited after 
its descendants. 
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The following code implements a postorder traversal of a tree as depicted in Fig. 52-10. An easy 
way to remember this code is to note the printing for this postorder traversal comes after the two 
recursive calls. 
 
 public void traverseAndPrint( ) 
 {   
  if( leftNode != null )  leftNode.traverseAndPrint( );   
  if( rightNode != null )  rightNode.traverseAndPrint( ); 
  System.out.println(theData); 
 } 
 
 

Level order traversal of a Binary Search Tree: 
Order of visitation of nodes: 50, 25, 76, 18, 35, 61, 80, 7, 19,  
30, 37, 56, 68, 78, 85 

 
 
 
 
Fig. 52-11 
Level order traversal 
follows the sequence 
of arrows. 
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The code that would implement this is a bit more involved than the others. One way to do it is to 
have counters that keep up with how deep we are in the tree. 
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An Application of Binary Trees… Binary Expression Trees 
 
 

 

Fig. 52-12    (6 + 8) * 2 

Consider the infix expressions (6 + 8) * 2 and 5 + (3 * 4). 
The expression trees to the right are a result of parsing these 
expressions. As can be inferred from the drawings, the 
following rules apply for an expression tree: 
 

• Each leaf node contains a single operand. 
• Each interior node contains an operator. 
• The left and right subtrees of an operator node 

represent subexpressions that must be evaluated 
before applying the operator at the operator node. 

 
o The levels of the nodes in the tree indicate 

their relative precedence of evaluation. 
o Operations at the lower levels must be done 

before those above them. 
o The operation at the root of the tree will be the 

last to be done. Fig 52-13   5 + (3 * 4) 
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We will now look at a larger expression tree and see how the inorder, preorder, and postorder 
traversals of the tree have special meanings with regard to the mathematics of an expression. 
  

 
 
 
Fig. 52-14   A binary expression 
tree for the infix expression  
(7 - 2) * ( (6+3) / 9) 

3 6 

9 +7 2 

- / 

* 

 
An Inorder Traversal of the above expression tree yields the infix form: (7 - 2) * ( (6+3) / 9) 
 
A Preorder Traversal of the above expression tree yields the prefix form: *  -  7  2  /  +  6  3  9 
 
A Postorder Traversal of the above expression tree yields the postfix form: 7  2 - 6  3  +  9  /  * 
Notice that the postfix form is Reverse Polish Notation (RPN), the form that was used for the 
stack calculator of Lesson 50. 
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Binary Search Tree… Contest Type Problems 
 
1. Which of the following replaces <*1>  in the code 
to the right to make the traverseAndPrint  method 
visit and print every node in a “Postorder” fashion? 
 

A. if(leftNd != null)  leftNd.traverseAndPrnt( ); 
System.out.print(info); 
if(rightNd!=null) rightNd.traverseAndPrnt( ); 
 

B. if(leftNd != null)  leftNd.traverseAndPrnt( ); 
 if(rightNd!=null) rightNd.traverseAndPrnt( ); 

System.out.print(info); 
 

C. System.out.print(info); 
 if(leftNd != null)  leftNd.traverseAndPrnt( ); 
 if(rightNd!=null)rightNd.traverseAndPrnt( ); 
 
D. leftNd.traverseAndPrnt( ); 

rightNd.traverseandPrnt( ); 
 

E. None of these 
 

2. Assume <*1> has been filled in correctly. Which 
of the following creates a Bst object obj and adds 55 
as a wrapper class Integer? 
 

A. Integer J; 
J = 55;  
Bst obj = Bst(J); 
     

B. Bst obj = new Bst( new Integer(55) ); 
 
C. Bst obj; 

obj.addNd(55); 
 

D. Bst obj; 
obj.addNd( new Integer(55) ); 

 
       E.  None of these  
 
3. Assume <*1> has been filled in correctly and that 
n objects are added to an object of type Bst in order 
from largest to smallest. What is the Big O value for 
searching this tree? 
 

A. O(n log n) 
B. O(log n) 
C. O(n) 
D. O(n2) 
E.   None of these 

//Binary Search Tree 
public class Bst 
{ 
      public Bst(Comparable addValue) 
      { 
 info = addValue; 
      } 
 
      public Bst addNd(Comparable addValue) 
      { 
 int cmp = info.compareTo(addValue); 
 
 if(cmp<0) 
 { 
       if(rightNd!=null) 
  rightNd.addNd(addValue); 
       else 
  rightNd=new Bst(addValue); 
 } 
 else if(cmp>0) 
 { 
       if(leftNd!=null) 
  leftNd.addNd(addValue); 
       else 
  leftNd=new Bst(addValue); 
 } 
 return this; 
      } 
 
      public void traverseAndPrnt( )  
      { 
 <*1> 
      } 
 
      private Comparable info; 
      private Bst leftNd; 
      private Bst rightNd; 
} 
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4. When a Bst object is constructed, to what value 
will leftNd and rightNd be initialized? 
 

A. this 
B. 0 
C. null 
D. Bst object 
E. None of these 
 

5. After executing the code below, what does the 
resulting tree look like? 
 
 Bst obj = new Bst(new Integer(11)); 
 obj.add(new Integer(6)) 
 obj.add(new Integer(13)); 
 
         A. ArithmeticException 
 
 
       B. 

 

 
 
       C. 

 

 
 
 
       D. 

 

 
E. None of these 
 

6. What replaces <*1>  in the code to the right so 
that a “Preorder” traversal is done? 
 

A. if(leftNd != null)  leftNd.traverseAndPrnt( ); 
System.out.print(info); 
if(rightNd!=null)rightNd.traverseAndPrnt(); 
 

B. if(leftNd != null)  leftNd.traverseAndPrnt( ); 
 if(rightNd!=null)rightNd.traverseAndPrnt(); 

System.out.print(info); 
 

C. System.out.print(info); 
 if(leftNd != null)  leftNd.traverseAndPrnt( ); 
 if(rightNd!=null)rightNd.traverseAndPrnt(); 
 
D. leftNd.traverseAndPrnt( ); 

rightNd.traverseandPrnt( ); 
 

E. None of these 

//Binary Search Tree 
public class Bst 
{ 
      public Bst(Comparable addValue) 
      { 
 info = addValue; 
      } 
 
      public Bst addNd(Comparable addValue) 
      { 
 int cmp = info.compareTo(addValue); 
 
 if(cmp<0) 
 { 
       if(rightNd!=null) 
  rightNd.addNd(addValue); 
       else 
  rightNd=new Bst(addValue); 
 } 
 else if(cmp>0) 
 { 
       if(leftNd!=null) 
  leftNd.addNd(addValue); 
       else 
  leftNd=new Bst(addValue); 
 } 
 return this; 
      } 
 
      public void transverseAndPrnt( )  
      { 
 <*1> 
      } 
 
      private Comparable info; 
      private Bst leftNd; 
      private Bst rightNd; 
} 
 

6 13 

11 

13 6 

11 

11 6 

13 
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7. What is a disadvantage of an unbalanced Binary Search Tree? 
 
A. No disadvantage                            B. Uses excessive memory                  C. Limited accuracy     
D. Reduced search efficiency             E.  None of these 
 
8. Average case search time for a Binary Search Tree that is reasonably balanced is of what order? 
 
A. O(n log n)              B. O(n2)               C. O(n)              D. O(1)              E. None of these 
 
9.  What positive thing(s) can be said about a completely unbalanced tree that results from adding the 
following integers to a tree in the sequence shown? 
 
                     { 5, 6, 7, … 999, 1000} 
 
A. The items are automatically in numerical order along the long sequential strand. 
B. The smallest number is automatically the root node.       C. The largest number is the root node. 
D. Both A and B                     E. Both A and C 

10. In what order are the nodes visited in the 
tree to the left if a preorder traversal is done? 
 

A. A, G, H, M, N, P, Q, R, X 
B. M, G, A, H, R, P, N, Q, X 
C. A, H, G, N, Q, P, X, R, M 
D. M, G, R, A, D, P, X, N, Q 
E. None of these 

11. In what order are the nodes visited in the 
tree to the left if a postorder traversal is done? 
 

A. A, G, H, M, N, P, Q, R, X 
B. M, G, A, H, R, P, N, Q, X 
C. A, H, G, N, Q, P, X, R, M 
D. M, G, R, A, H, P, X, N, Q 
E. None of these 

 

12. In what order are the nodes visited in the 
tree to the left if an inorder traversal is done? 
 

A. A, G, H, M, N, P, Q, R, X 
B. M, G, A, H, R, P, N, Q, X 
C. A, H, G, N, Q, P, X, R, M 
D. M, G, R, A, H, P, X, N, Q 
E. None of these 
 

13. For the tree above, which of the following is a possible order in which the nodes were 
originally added to the binary search tree? 
 
 A.    M, G, R, A, H, X, P, N, Q                     B.   M, G, R, A, H, Q, N, P, X  
 C.    M, R, A, G, H, X, P, N, Q                     D.   A, G, H, M, N, P, Q, R, X      
  E.   None of these 

Q N 

X P A H 

G R 

M 
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14. What mathematical infix expression is represented by the 
binary expression tree to the right? 
 

A. (4 + 3) / 7 
B. 4 / (3 + 7) 
C. 7 / 4 / 3 + 7 
D. (4 / 3) + 7 
E. None of these 

 

15. What mathematical infix expression is represented by the 
binary expression tree to the right? 
 

A. 5 * 2 + 4 
B. 5 * (2 + 4) 
C. (2 * 4) + 5 
D. 5 * 2 * (+4) 
E. None of these 

 

16. Which of the following is a postfix version of the following mathematical expression? 
 
                     (37 - 59) * ( (4 + 1) / 6 ) 
 

A. *  -  37  59  /  +  4  1  6 
B. (37 - 59) * ( (4 + 1) / 6 ) 
C. 37  59  -  4  1  +  6  /  * 
D. 37  -  59  *  4  +  1  /  6 
E. None of these 

 
 
17. What is the minimum number of levels for a binary tree with 20 nodes? 
 
 A. 20  B. 7  C. 6  D. 5  E. None of these 
 
 
18. What is the maximum number of levels for a binary tree with 20 nodes? 
 
 A. 20  B. 7  C. 6  D. 5  E. None of these 
 

4 3 
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+ 

4 

+ 
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