

 Blue Pelican Java

 Graphical Labs
Teacher Manual

 Copyright ©, 2008 by Charles Cook;
 Refugio, Tx

 (all rights reserved)

Table of Contents

Topic
BPJ Text
Lesson # Page #

Getting started – Installation of software ………………………. GS-1
Demonstrating GridWorld ……………………………………... DG-1
BugLab 1 – ANDing two Booleans ……………………………. 8 BL 1-1
 BugLab 1 Key BL 1-3
BugLab 2 – Using a boolean with if-else ………………………. 9 BL 2-1
 BugLab 2 Key BL 2-3
BugLab 3 – Using switch and modulus ………………………... 10 BL 3-1
 BugLab 3 Key BL 3-3
BugLab 4 – Using a for loop …………………………………… 11 BL 4-1
 BugLab 4 Key BL 4-3
BugLab 5 – Using a while loop ………………………………... 12 BL 5-1
 BugLab 5 Key BL 5-3
BugLab 6 – Creating new objects from a class ………………… 15 BL 6-1
 BugLab 6 Key BL 6-3
BugLab 7 – Passing arguments to a class constructor …………. 16 BL 7-1
 BugLab 7 Key BL 7-3
BugLab 8 – Using data members and the compareTo method … 17 BL 8-1
 BugLab 8 Key BL 8-6
BugLab 9 – Using Scanner with Strings, regular expressions …. 17 BL 9-1
 BugLab 9 Key BL 9-2
BugLab 10 – Using an array of Strings and Arrays.toString …... 19 BL 10-1
 BugLab 10 Key BL 10-3
BugLab 11 – Using an array of objects ………………………… 19 BL 11-1
 BugLab 11 Key BL 11-3
BugLab 12 – Using a static data member ……………………… 20 BL 12-1
 BugLab 12 Key BL 12-3
BugLab 13 – File input, processing Strings with Scanner ……... 25 BL 13-1
 BugLab 13 Key BL 13-3
BugLab 14 – Writing to a file ………………………………….. 26 BL 14-1
 BugLab 14 Key BL 14-2
BugLab 15 – Bitwise operations (AND and OR) ……………… 28 BL 15-1
 BugLab 15 Key BL 15-3
BugLab 16 – Bitwise operations and Scanner’s findInLine …… 17, 28 BL 16-1
 BugLab 16 Key BL 16-3
BugLab 17 – Random numbers, nextInt ……………………….. 30 BL 17-1
 BugLab 17 Key BL 17-3
BugLab 18 – Using the selection operator (ternary conditional).. 33 BL 18-1
 BugLab 18 Key BL 18-3
BugLab 19 – Two-dimensional arrays …………………………. 35 BL 19-1
 BugLab 19 Key BL 19-3

Topic
BPJ Text
Lesson # Page #

BugLab 20 – Inheritance, overriding methods …………………. 36 BL 20-1
 BugLab 20 Key BL 20-3
BugLab 21 – Using instanceof …………………………………. 36 BL 21-1
 BugLab 21 Key BL 21-6
BugLab 22 – Exceptions (try – catch) …………………………. 37 BL 22-1
 BugLab 22 Key BL 22-3
BugLab 23 – Recursion 40 ……………………………………... 40 BL 23-1
 BugLab 23 Key BL 23-2
BugLab 24 – Using the ArrayList class ………………………... 42, 43 BL 24-1
 BugLab 24 Key BL 24-3
BugLab 25 – Using ArrayList and ListIterator ………………… 43, 44 BL 25-1
 BugLab 25 Key BL 25-3
BugLab 26 – Sorting an array, compareTo …………………….. 41, 45 BL 26-1
 BugLab 26 Key BL 26-4
BugLab 27 – Sorting, using a StringBuffer’s reverse method …. 31, 41 BL 27-1
 BugLab 27 Key BL 27-4
BugLab 28 – Sorting with a Comparator object ……………….. 45 BL 28-1
 BugLab 28 Key BL 28-4
BugLab29 – Finding the intersection of Sets …………………... 46 BL 29-1
 BugLab 29 Key BL 29-4
BugLab 30 – Using a Map object ……………………………… 47 BL 30-1
 BugLab 30 Key BL 30-5

 DG-1

Demonstrating GridWorld

Run the code:

In this chapter we will get a feeling for how GridWorld works. To do this, import
the two files in the BasicBug folder into a project in your IDE, compile both
classes, and then execute the main method of the BasicBugRunner class. To run
main in BlueJ, right-click on the BasicBugRunner class icon and then click on
void main. The following graphical interface will appear (If not, it may only
appear as an item on the task bar. Just click on it to make it display.)

Fig DG-1.
GridWorld,
BasicBugRunner
graphical interface

Experiment:

Click on the Step button a couple of times and observe the bug moving forward.
Now click on any empty cell and get a display similar to the following:

Fig DG-2. The result of
clicking on an empty cell.

 DG-2

Click on one of the items in the drop-down menu and add another bug, flower, or
rock to the grid at this grid location. Continue experimenting with the controls in
this graphic interface and the following facts will soon become apparent:

• Each time the Step button is clicked, the Bug advances one cell, leaving
behind a flower of the same color as the bug. Each time the bug advances,
each flower in it’s “flower trail” becomes progressively darker, thus
showing their age.

• If the bug encounters an obstacle (the black rock in Fig. DG-1) or the edge
of the grid, instead of moving forward, it turns 45 degrees clockwise. If it
still can’t move, it turns another 45 degrees. This turning continues until it
can move forward.

• A bug does not consider a flower to be an obstacle. When moving forward
into a flower location, the bug “eats” the flower and it disappears.

• Clicking the Run button results in the bug continuing to step with a delay
between steps determined by the Slow/Fast slider.

• The Stop button is only active after Run is clicked. It stops the Run
process.

Don’t use them:

It is recommended that the World and Location menu items at the top of the
interface not be used with these labs.

Making changes:

Clicking on an object such as a bug, rock, or flower results in the following drop-
down menu.

Fig DG-2. The drop-
down menu that results
from clicking on a Bug,
Rock, or Flower.

 DG-3

The drop-down menu:
The items in this object drop-down menu are all methods of that object.
Clicking on one of these items is, in effect, equivalent to calling that
method. The menu items seen here are peculiar to the object selected. The
methods available for the Bug, Rock, and Flower are all different. If
parameters are required when selecting a method, a dialog box will appear
for their entry.

Direction and coordinate conventions:

Some of the methods that can be selected in the above menu samples will call for
directions, and GridWorld has its own conventions. Unlike regular mathematics
where East is 0 degrees and positive angles rotate counterclockwise, here in
GridWorld, north is 0 degrees and positive angles rotate clockwise.

Why did the creators of this class do it that way? Supposedly, it is because this is
conventionally how navigation of ships and aircraft is done (north is 0 degrees
with positive angles rotating clockwise.), and here in GridWorld we are
“navigating” the grid.

There is yet another difference from conventional mathematics where it is
customary to think of the origin as being in the center (sometimes the lower left
corner) with the positive vertical axis (the “Y” axis) proceeding upward: not so
in GridWorld. The origin (0,0) is the cell in the upper left corner with the
positive direction of the vertical axis proceeding downward. The positive
direction of the horizontal axis is still to the right as it is conventionally.

Continue to experiment:

Continue to experiment by creating new objects in the grid. Then click on those
objects to change their properties. The student should become aware that this is an
effective learning technique – experimenting.

 BL 4 - 1

BugLab 4 – Using a for loop (Blue Pelican Java Lesson 11)

(Teacher: Although students may not yet be well versed with the meaning of the term
“method”, it is used below. As a result, hopefully, the student will become accustomed to
hearing the term and feel more comfortable when the creation of methods is explored in
future lessons.)

Create the project:

Create a new project (named BugLab4) with your IDE and into the resulting
folder, import the two classes in the BasicBug folder. In the IDE BlueJ, it’s done
as follows:

Create the project with Project | New project, being careful to create this
project within the C:\GridworldProjects folder. Then bring in two classes
mentioned above with Project | Import (Navigate to the
C:\GridWorldProjects\BasicBug folder and then click Import.)

Look at the source code:

Next, open the source code for the BasicBug class (we will not need to modify the
BasicBugRunner class). Modify the code for this class as follows:

import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{

 public void act() //Executes each click of the Step button.
 {

 if(canMove())
 {
 move();
 }
 else
 {
 turn();
 }

 }
}

Three GridWorld methods:
Just as main is a “method”, GridWorld has three methods that we will find useful
in this lab. We need not understand how they work. All we need to know is that
they do work and that they produce the results described below.

canMove()

All we need to know is that this returns a boolean. It will be true if the bug
sees no obstacle in front of it. A false will be returned if the bug can’t

 BL 4 - 2

move forward; perhaps another bug or rock is in its path, or it’s at the edge
of the grid.

move()

This method simply moves the bug forward one cell.

turn()

The bug faces a new direction by turning 45 degree clockwise.

The task at hand:

Currently, the bug moves forward with one click of the Step button and
rotates 45 degrees clockwise (using the turn method) when it can no
longer move in its forward direction.

Our job here is to make the bug turn 45 degree counter clockwise when it
can no longer move in its forward direction. This will be done by
replacing the single turn in the code above with multiple turns. These
multiple 45 degree clockwise turns should bring the bug to the eventual
direction that is equivalent to a single turn of 45 degree counter clockwise.

Instead of replacing the single turn in the code above with multiple turn’s,
create a for loop that executes turn the appropriate number of times.

 BL 4 - 3

BugLab 4 Key:

import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{

 public void act() //Executes each click of the Step button.
 {

 if(canMove())
 {
 move();
 }
 else
 {
 for(int j = 0; j < 7; j++) // 7 X 45 = 315 degrees
 turn(); //executes 7 times
 }

 }
}

 BL 5 - 1

BugLab 5 – Using a while loop (Blue Pelican Java Lesson 12)

(Teacher: Refer to previous labs for a detailed discussion of the various GridWorld
methods (act, canMove, move, & turn) used in these labs. If the students have done the
previous labs, then they should already be accustomed to the use of these methods.)

Create the project:

Create a new project (named BugLab5) with your IDE and into the resulting
folder, import the two classes in the BasicBug folder. In the IDE BlueJ, it’s done
as follows:

Create the project with Project | New project, being careful to create this
project within the C:\GridworldProjects folder. Then bring in two classes
mentioned above with Project | Import (Navigate to the
C:\GridWorldProjects\BasicBug folder and then click Import.)

Look at the source code:

Next, open the source code for the BasicBug class (we will not need to modify the
BasicBugRunner class). The code for this class should read as follows:

import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{

 //Unique code for each lab to be placed here
}

Enter act method skeleton:
import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{

 public void act() // Executes each time the Step button is clicked.
 {

 }

}

The task at hand:

Currently, the bug moves forward with one click of the Step button and rotates 45
degrees clockwise when it can no longer move in its forward direction.

Our job here is to redo Lab2 in which we “tried” to make the bug move forward
two times with each click of the step button. There we discovered that we were
unable to guarantee two moves since with each attempted move we might have
needed to turn the bug, instead. Now that we have the while loop in our arsenal of
Java weapons, it is possible to guarantee two moves with each Step button click.

 BL 5 - 2

Hint: In the act method place a while loop that stays in the loop as long as
canMove is false, and inside the loop place the turn method. When canMove is
true, the loop is exited and it is safe to move the bug. This all ensures that the first
move will definitely be done after any and all necessary turns. Repeat the entire
process to ensure the second move.

 BL 5 - 3

BugLab 5 Key:

import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{

 public void act()
 {

 //Stay in this loop and keep turning until canMove is true
 while(!canMove())
 {

 turn();
 }
 move(); //The first move

 //Repeat the entire procedure to produce the second move
 while(!canMove())
 {

 turn();
 }
 move();

 }
}

 BL 6 - 1

BugLab 6 – Creating new objects (Blue Pelican Java Lesson 15)

(Teacher: Refer to Labs 4 and earlier for a detailed discussion of the various GridWorld
methods used in these labs (act, canMove, move, & turn). If the students have done the
previous labs, then they should already be accustomed to the use of these methods.)

Create the project:

Create a new project (named BugLab6) with your IDE and into the resulting
folder, import the two classes in the BasicBug folder. In the IDE BlueJ, it’s done
as follows:

Create the project with Project | New project, being careful to create this
project within the C:\GridworldProjects folder. Then bring in two classes
mentioned above with Project | Import (Navigate to the
C:\GridWorldProjects\BasicBug folder and then click Import.)

Modify BasicBug:

Modify the source code for BasicBug as shown below. This will cause the bug to
exhibit the default behavior (moving forward one cell for each click of the Step
button or turning clockwise 45 degree if a move is not possible):

import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{

 public void act()
 {

 if(canMove())
 {
 move();
 }
 else
 {
 turn();
 }

 }
}

The task at hand:

Our job here is to modify the BasicBugRunner class so as to produce two bugs
and a rock as shown below in Fig.BugLab6–1. A magenta bug should be located
in row 1, column 0. A red rock should be in row 3, column 1. A green bug should
be in row 3, column 4.

Notice that rows are numbered from top to bottom with 0 being the index of the
top row. Columns are numbered from left to right with 0 being the index of the
far left column.

 BL 6 - 2

Fig.BugLab6-1
Initial positions of the three
objects.

The existing code for BasicBugRunner is shown below. Study it to see how the
bug1 and rock1 objects are created and placed in the grid at certain locations.
Then in a similar way modify the code to produce the three colored objects in the
locations specified above.

//This class will not compile until the BasicBug class first compiles.
import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;
import java.awt.Color;
import info.gridworld.actor.Rock;
public class BasicBugRunner
{
 public static void main(String args[])
 {
 ActorWorld world = new ActorWorld();
 BasicBug bug1 = new BasicBug(); //Create and set color of bug1
 bug1.setColor(Color.ORANGE);

 Rock rock1 = new Rock(); //Create and set color of rock1
 rock1.setColor(Color.BLACK);

 world.add(new Location(5,3), bug1); //Add to grid and set location
 world.add(new Location(1, 3), rock1);
 world.show();
 }
}

 BL 6 - 3

BugLab 6 Key:

import java.awt.Color;
import info.gridworld.actor.Rock;
public class BasicBugRunner
{
 public static void main(String args[])
 {
 ActorWorld world = new ActorWorld();

 BasicBug bug1 = new BasicBug(); //Create and set color for bug1
 bug1.setColor(Color.MAGENTA);

 BasicBug bug2 = new BasicBug(); //Create and set color for bug2
 bug2.setColor(Color.GREEN);

 Rock rock1 = new Rock();
 rock1.setColor(Color.RED);

 //Place objects in the grid and specify locations
 world.add(new Location(1,0), bug1);
 world.add(new Location(3,4), bug2);
 world.add(new Location(3, 1), rock1);
 world.show();
 }
}

 BL 7 - 1

BugLab 7 – Passing arguments to a constructor (Blue Pelican
Java Lesson 16)

(Teacher: Refer to Labs 4 and earlier for a detailed discussion of the various GridWorld
methods used in these labs (act, canMove, move, & turn). If the students have done the
previous labs, then they should already be accustomed to the use of these methods.)

Create the project:

Create a new project (named BugLab7) with your IDE and into the resulting
folder, import the two classes in the BasicBug folder. In the IDE BlueJ, it’s done
as follows:

Create the project with Project | New project, being careful to create this
project within the C:\GridworldProjects folder. Then bring in two classes
mentioned above with Project | Import (Navigate to the
C:\GridWorldProjects\BasicBug folder and then click Import.)

Modify BasicBug:

Modify the source code for BasicBug as shown below. This will cause the bug to
exhibit the default behavior (moving forward one cell for each click of the Step
button or turning clockwise 45 degree if a move is not possible):

import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{

 public void act()
 {

 if(canMove())
 {
 move();
 }
 else
 {
 turn();
 }

 }
}

The task at hand:

Our job here is to modify the both the BasicBug and BasicBugRunner classes so
as to accommodate a constructor in BasicBug.

Creating the BasicBug constructor:

Create a constructor for the BasicBug class that will receive as parameters, a
Color object and an int type variable. Then provide the internal code for the
constructor as indicated by the following:

 BL 7 - 2

public BasicBug(Color clr, int numTurns)
{
 //Use clr with the setColor method to set the bug’s color.
 //Use numTurns to iterate through a for-loop in which the
 //turn method is executed each time.
}

Notice that at the time of creation of a BasicBug object, this constructor
allows us to set the color of the bug and to orient the bug in a new direction
by turning a specified number of times (each turn is 45 degrees).

Add another import:
To the BasicBug class add the following import so as to accommodate the
use of the Color type:

 import java.awt.Color;

Adjusting the BasicBugRunner code:
The following line of code in BasicBugRunner should be modified to pass
to the BasicBug constructor, a Color object (Color.GREEN) and an integer
(3) specifying the number of times to initially turn the newly created
BasicBug object.

 BasicBug bug1 = new BasicBug(?, ?);

Run the main method in BasicBugRunner and the resulting display should be as
follows (notice the green bug turned 45 X 3 = 135 degrees):

Fig. BugLab7-1 Initial position
and orientation of the bug &
rock.

 BL 7 - 3

BugLab 7 Key:

//This class will not compile until the BasicBug class first compiles.
import info.gridworld.actor.ActorWorld;
import info.gridworld.grid.Location;
import java.awt.Color;
import info.gridworld.actor.Rock;
public class BasicBugRunner
{
 public static void main(String args[])
 {
 ActorWorld world = new ActorWorld();

 //Make a green bug and turn 45 X 3 = 135 degrees
 BasicBug bug1 = new BasicBug(Color.GREEN, 3);

 Rock rock1 = new Rock();
 rock1.setColor(Color.BLACK);

 //Add the objects to the grid at the specified locations

 world.add(new Location(5,3), bug1);
 world.add(new Location(1, 3), rock1);
 world.show();
 }
}

import info.gridworld.actor.Bug;
import java.awt.Color;
public class BasicBug extends Bug
{

 public BasicBug(Color clr, int numTurns){ //Constructor
 setColor(clr); //Color the bug
 for(int j = 0; j < numTurns; j++) //Turn numTurns times
 turn();

 }

 public void act(){

 if(canMove()){
 move();
 }
 else
 {
 turn();
 }

 }
}

 BL 23 - 1

BugLab 23 – Using recursion (Blue Pelican Java Lesson 39)

(Teacher: Refer to Labs 4 and earlier for a detailed discussion of the various GridWorld
methods used in these labs (act, canMove, move, & turn). If the students have done the
previous labs, then they should already be accustomed to the use of these methods.)

Create the project:

Create a new project (named BugLab23) with your IDE and into the resulting
folder, import the two classes in the BasicBug folder. In the IDE BlueJ, it’s done
as follows:

Create the project with Project | New project, being careful to create this
project within the C:\GridworldProjects folder. Then bring in the two
classes mentioned above with Project | Import (Navigate to the
C:\GridWorldProjects\BasicBug folder and then click Import.)

Modify BasicBug:

The following code for BasicBug produces it’s default behavior; the bug moves
when it can and when it can’t, it turns 45 degrees clockwise.

import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{

 public void act()
 {
 if(canMove())
 {
 move();
 }
 else
 {
 turn();
 }
 }

}

The task at hand:
We wish to modify the code above so that act is recursively called so as to
continually move the bug forward. Recursion should stop when the bug needs to
turn. As a result, each time the Step button is clicked, the bug should be seen to
move forward as far as it can (until a turn is necessary). It will then stop and wait
for the next click of the Step button.

While recursion is one of the more sophisticated concepts in computer science, this
particular lab is one of the easiest. Actually, only one line of code needs to be added to
make the bug perform as described.

 BL 23 - 2

BugLab 23 Key:

import info.gridworld.actor.Bug;
public class BasicBug extends Bug
{
 public void act()
 {
 if(canMove())
 {
 move();
 act(); //Recursion occurs here.
 }
 else
 {
 //Recursion is terminated here.
 turn();
 }
 }

}

 BL 28 - 1

BugLab 28– Sorting with Comparator (Blue Pelican Java Lesson 44)

(Teacher: Refer to Labs 4 and earlier for a detailed discussion of the various GridWorld
methods used in these labs (act, canMove, move, & turn). If the students have done the
previous labs, then they should already be accustomed to the use of these methods.)

Create the project:

Create a new project (named BugLab28) with your IDE and into the resulting
folder, import the two classes in the BasicBug folder. In the IDE BlueJ, it’s done
as follows:

Create the project with Project | New project, being careful to create this
project within the C:\GridworldProjects folder. Then bring in the two
classes mentioned above with Project | Import (Navigate to the
C:\GridWorldProjects\BasicBug folder and then click Import.)

Modify BasicBugRunner:

This lab is very similar to BugLabs 24-27. Use the exact same BasicBugRunner
class as in those labs. It creates three bugs and one rock.

Modify BasicBug:

The BasicBug class will have the following code. Notice the area of
“Modifications go here.” That is where a Comparator object will be used to
sort the locStr array:

import info.gridworld.actor.Bug;
//All these imports are necessary for the getLocationArray method
import info.gridworld.grid.*;
import java.util.*;
import info.gridworld.actor.Actor;
public class BasicBug extends Bug
{
 public void act()
 {

 if(canMove())
 {
 move();
 }
 else
 {
 turn();
 }
 String locStr[] = getLocationArray();

 //Sort using a comparator

 ….Modifications go here….

 BL 28 - 2

 //Print the sorted array
 for(int j = 0; j < locStr.length; j++)
 {

 System.out.println(locStr[j]);
 }
 System.out.println(); //Print a blank line.

 }

 //This method produces a String array in "r,c" format of the
 //coordinatesof all occupied cells.
 public String[] getLocationArray()
 {

 //Get the coordinates of all occupied cells.
 Grid<Actor> gr = getGrid(); //Obtain the grid object
 //locList is an ArrayList of all the occupied locations.
 ArrayList<Location> locList = gr.getOccupiedLocations();
 String locStr[] = new String[locList.size()];
 for(int j = 0; j < locList.size(); j++)
 {

 Location loc = locList.get(j);
 //Stuff a String array with row & col numbers separated
 //by a comma.
 locStr[j] = "" + loc.getRow() + "," + loc.getCol();

 }
 return locStr;

 }
}

Again, it is not necessary to understand the getLocationArray method (just copy
and paste): all that is necessary is to know that it returns a String array containing
the coordinates of occupied cells. Unlike several previous labs, notice that the
String array returned by getLocationArray is in standard row-column form.

The task at hand:
Create a class that implements Comparator and then implement the compare
method inside it. The two Objects it receives will be Strings in the form “3,5”.
Convert these numbers into a product (15 in this example) and compare those
products inside the compare method.

Use the class thus produced to create a Comparator object and this pass that
object along with the String array, locStr, to the Arrays.sort method. Place this
code in the code area, “Modifications go here.”

Testing the code:
Run main in BasicBugRunner, advance the bugs by clicking the Step button

 BL 28 - 3

several times, and observe the printout on the console screen. It should be
recognized that the act method executes for each bug each time the Step button is
clicked. As the bugs advance they leave behind a trail of Flower objects. Thus,
the number of objects on the grid increases with each click of the Step button.

The following output is produced with a single click of the Step button. Notice the
order is with respect to the product of the row and column numbers.

1,3
1,7
2,7
5,3
4,6

1,3
1,7
2,7
5,3
3,6
4,6

1,3
1,7
4,3
2,7
5,3
3,6
4,6

 BL 28 - 4

BugLab 28 Key:

import info.gridworld.actor.Bug;
//All these imports are necessary for the getLocationArray method
import info.gridworld.grid.*;
import java.util.*;
import info.gridworld.actor.Actor;
public class BasicBug extends Bug
{

 public void act()
 {

 if(canMove())
 {
 move();
 }
 else
 {
 turn();
 }
 String locStr[] = getLocationArray();

 //Sort using a comparator
 Comparator cmptr = new LocStrComparator();
 Arrays.sort(locStr, cmptr);

 //Print the sorted array
 for(int j = 0; j < locStr.length; j++)
 {
 System.out.println(locStr[j]);
 }
 System.out.println(); //Print a blank line.

 }

 //This method produces a String array in "r,c" format of the coordinates
 //of all occupiued cells.
 public String[] getLocationArray()
 {

 //Get the coordinates of all occupied cells.
 Grid<Actor> gr = getGrid(); //Obtain the grid object
 //locList is an ArrayList of all the occupied locations.
 ArrayList<Location> locList = gr.getOccupiedLocations();
 String locStr[] = new String[locList.size()];
 for(int j = 0; j < locList.size(); j++)
 {
 Location loc = locList.get(j);
 //Stuff a String array with row & col numbers separated by comma.

 BL 28 - 5

 locStr[j] = "" + loc.getRow() + "," + loc.getCol();
 }
 return locStr;

 }
}

import java.util.*;
public class LocStrComparator implements Comparator
{

 //Compare Strings in the format "r,c" according to the product r*c
 public int compare(Object firstObj, Object secondObj)
 {
 String s1 = (String)firstObj; //Typical String, "3,5"
 String s2 = (String)secondObj;

 //product1 will be the product of the row # and column # in s1
 String sp[] = s1.split(",");
 int r = Integer.parseInt(sp[0]);
 int c = Integer.parseInt(sp[1]);
 int product1 = r * c;

 //product2 will be the product of the row # and column # in s2
 sp= s2.split(",");
 c = Integer.parseInt(sp[0]);
 r = Integer.parseInt(sp[1]);
 int product2 = r * c;

 int retValue;
 if(product1 < product2)
 {

 retValue= -1;
 }
 else
 {

 if(product1 > product2)
 {

 retValue = 1;
 }
 else
 {

 retValue = 0;
 }

 }
 return retValue;
 }

}

	Cover
	Table Of Contents
	GettingStarted
	Demonstrating GridWorld
	BugLab01_Lesson08
	BugLab02_Lesson09
	BugLab03_Lesson10
	BugLab04_Lesson11
	BugLab05_Lesson12
	BugLab06_Lesson15
	BugLab07_Lesson16
	BugLab08_Lesson17
	BugLab09_Lesson17
	BugLab10_Lesson19
	BugLab11_Lesson19
	BugLab12_Lesson20
	BugLab13_Lesson24
	BugLab14_Lesson25
	BugLab15_Lesson27
	BugLab16_Lesson17,27
	BugLab17_Lesson29
	BugLab18_Lesson32
	BugLab19_Lesson34
	BugLab20_Lesson35
	BugLab21_Lesson35
	BugLab22_Lesson36
	BugLab23_Lesson39
	BugLab24_Lesson41,42
	BugLab25_Lesson42,43
	BugLab26_Lesson40,44
	BugLab27_Lesson30,40
	BugLab28_Lesson44
	BugLab29_Lesson45
	BugLab30_Lesson46

